Künstliche Intelligenz – Gemeinwohl und Nachhaltigkeit statt nur Profit

30. August 2020 - 12:30 | | Gesellschaft,Politik | 1 Kommentare
By GPA Photo Archiv, Flickr, CC public domain.

Mit Blick auf die Diskussionen um die Agrar-, Energie- oder Verkehrswende sind die Hoffnungen auf die Künstliche Intelligenz groß. Doch sie wird nur marginale Wissens- und Effizienzzuwächse ermöglichen, nicht aber der entscheidende Faktor der Transformation sein. Maschinelles Lernen kann nur begrenzt zu Nachhaltigkeit beitragen – und das auch nur, wenn es politisch gewünscht wird.

Annika Kettenburg studierte Umwelt- und Nachhaltigkeitswissenschaften in Lüneburg, Thailand und Lund (Schweden). In ihrer Masterarbeit, auf der dieser Artikel basiert, untersuchte sie die Potentiale und Grenzen von Künstlicher Intelligenz für Nachhaltigkeit sowie die vorherrschenden Motive im politischen Diskurs um KI.

Künstliche Intelligenz und Nachhaltigkeit: Eine kritische Analyse

Wohin wir blicken: Die hohen gesellschaftlichen Erwartungen an Künstliche Intelligenz (KI) bleiben omnipräsent. Man schreibt KI Chancen und Risiken riesigen Ausmaßes zu oder stilisiert KI gar als „game changer for climate change and the environment“.

Jedoch ist Maschinelles Lernen (ML) – der Kerninhalt des Oberbegriffs KI – nur für wenige Bereiche sehr gut geeignet und, wie jede Technologie, keine Lösung für soziale und ökologische Probleme.

Um dies zu erläutern, unterscheide ich zwei Ebenen, die im öffentlichen Diskurs zu KI und Nachhaltigkeit häufig nicht stark genug getrennt werden: Da ist die Sphäre der technischen Möglichkeiten, in der KI-Anwendungen für gesellschaftliche Probleme erdacht oder ihre Kosten und Nutzen für Nachhaltigkeit abgewogen werden. Auf dieser Ebene, im Elfenbeinturm der abstrakten Ideen, spielt sich nahezu die gesamte Debatte ab.

Ausgeblendet wird dabei die zweite Ebene: ihr realweltlicher Schauplatz. Hier verlieren logische Argumente über den gemeinwohlfördernden Einsatz von KI an Bedeutung gegenüber ganz anderen Logiken – zum Beispiel dem Streben, mit KI den eigenen Einfluss zu vergrößern.

KI im Elfenbeinturm: Theoretische Limitationen und Chancen für Nachhaltigkeit

Maschinelle Lernverfahren generalisieren Daten in Modellen und extrapolieren Werte auf Basis der abgeleiteten Funktionen, meist im Rahmen von Regressions- oder Clusteranalysen. Besonders durch den Einsatz neuronaler Netze erfuhren diese bewährten statistischen Verfahren in den letzten Jahren eine große Steigerung ihrer Performanz.

Immer noch aktuell bleibt zugleich die Mahnung zur Vorsicht im Umgang mit solchen Analysen: Daten sind immer von Menschen erzeugt, somit Konstrukte und nie ein objektives Abbild der Realität. Die Repräsentativität von Daten wird stets vorausgesetzt, jedoch faktisch nie erreicht. Fehler sind und bleiben inhärente Bestandteile von ML-Modellen. Die Intransparenz neuronaler Netze verbirgt Fehler und bietet Einfallstore für die gezielte Manipulation.

Wie wünschenswert ist Maschinelles Lernen, und wie mächtig?

Umso komplexer die zu modellierenden Zusammenhänge und umso folgenreicher die Anwendung dieser Modelle, desto wichtiger wird die ethische Abwägung des Einsatzes von ML. So ist es zwar möglich, ML zur Vorhersage von sozialem Verhalten für automatisierte Entscheidungsverfahren zu verwenden, etwa für das Kredit-Scoring, Berechnungen der Rückfallwahrscheinlichkeit oder für die Verteilung von Sozialhilfe. Doch während man einen technischen Prozess durch Daten annäherungsweise abbilden kann, ist dagegen die soziale Wirklichkeit nur subjektiv selektiv modellierbar. Zugleich wären Fehlentscheidungen des Modells hier weitaus folgenreicher für die Betroffenen. Darum fokussiert sich dieser Artikel auf die ökologische Komponente der Nachhaltigkeit.

Wie mächtig ist ML? Begriffe wie Künstliche Intelligenz oder Maschinelles Lernen suggerieren, dass die Technologie selbst zum Akteur wird. Doch Daten und ML-Modelle sind Produkte menschlichen Handelns: Daten werden gesammelt und gelabelt, ML-Methoden ausgewählt, Hyperparameter bestimmt, damit herumexperimentiert, erreichte Treffgenauigkeiten als ausreichend akzeptiert und dann das Modell in konkrete Anwendungen eingebettet. Diese menschliche Kontrolle entzaubert KI.

Wie kann ML zu Nachhaltigkeit beitragen? Die Nachhaltigkeitspotentiale von ML kann man grob in zwei Klassen einteilen: zum einen die Generierung empirischen Wissens über Umweltprozesse, gegebenfalls angewandt in Frühwarnsystemen; zum anderen die Steigerung von technischer Effizienz durch genauere Abstimmung von Angebot und Nachfrage.

Generierung empirischen Wissens

Mit Hilfe von ML kann beispielsweise besser vorhergesagt werden, an welchen Standorten und zu welchen Zeitpunkten Dürre droht, Starkregen zunimmt, Gewässer eutrophieren oder die Biodiversität besonders stark abnimmt.

Doch was bewirkt es, das Insektensterben genauer zu kartieren, wenn dort dann kein Lebensraum geschaffen wird? Die Hauptgründe für den Artenrückgang, also intensive Landwirtschaft und Zersiedlung, sind gesellschaftliche Prioritäten. Diese ändern sich nicht automatisch durch mehr Wissen um den damit einhergehenden Biodiversitätsverlust. Umweltwissenschaftler*innen rennen mit ihrer Forschung gegen Wände, und das schon seit Jahrzehnten.

Selbst Frühwarnsysteme vor Naturkatastrophen sind nur so effektiv wie das Krisenmanagement, in das sie eingebettet sind. So sind beispielsweise Warnungen vor Hurrikans in allen Karibikstaaten verfügbar, dennoch unterscheiden sich ihre Opferzahlen erheblich – wie Telepolis bei Hurrikane Matthew titelte: „542 Tote in Haiti, 21 Tote in den USA, 0 Tote in Kuba“. Was zählt, sind die Taten vor und nach einer Katastrophenwarnung, die sofortige Evakuierung und langfristige Prävention, sprich das soziale und politische Krisenmanagementsystem.

Grundlagenforschung ist und bleibt elementar, um unseren Planeten besser zu verstehen und gefährliche Entwicklungen zu antizipieren. Ohne hochkomplexe Klimamodelle – die durch Maschinelle Lernverfahren weiter verbessert werden können – gäbe es Klimawandelbekämpfung und -anpassung in ihrem heutigen Ausmaß wohl nicht. Wie beim Artensterben oder bei Naturkatastrophen ist es hier jedoch eine gesellschaftliche und politische Aufgabe, diesen Umweltveränderungen die entsprechende Relevanz beizumessen sowie Erkenntnisse in politische Strategien und praktische Routinen zu übersetzen.

Ein Kommentar